Atomic levels in superstrong $$ **of massive electrons: screening**

M.I.Vysotsky

ITEP, Moscow

QUARKS 2010

Kolomna, June 6-12

accepted in JETP letters; arXiv:1005.5695

plan

- $a_B, a_H, \,\, a_H << a_B \Longrightarrow B >> e^3 m_e^2$ electron from Landau
level feels weak Coulomb potential moving along axis z: level feels weak Coulomb potential moving along axis z; Loudon, Elliott 1960: $E_0 = -(me^4/2) \times \ln^2(B/(m^2e^3))$?
- $D = 2$ QED Schwinger model with massive electrons,
redictive "corrections" to Coulemb potential in $d = 1$; radiative "corrections" to Coulomb potential in $d=1;$ $\Pi_{\mu\nu}$, interpolating formula, analytical formula for $\Phi(z)$, $g > m$ - photon "mass" $m_\gamma \sim g$, screening at ALL z when
 $g > m$ $q > m$
- $D = 4$ QED; photon "mass" $m_{\gamma}^2 = e^3 B$ at superstrong magnetic fields $B >> m_e^2/e^3 = 137 \times 4.4 \times 10^{13}$ gauss; asymptotic behaviour of $\Phi(z)$ at $z >> 1/m_e$ (no
especies) and at $z \leq 1$ (abotes "reseas" a screening) and at $z << 1/m_e$ (photon "mass" and
sereening) screening)
- **P** ground state hydrogen atom energy in the superstrong magnetic field; excited levels

\boldsymbol{b} **ydrogen atom in strong** B

$$
d = 3 : (p2/(2m) – e2/r)\chi(r) = E\chi(r)
$$

$$
R(r) = \chi(r)/r, r \ge 0, \chi(0) = 0
$$

$$
d = 1 : (p^2/(2m) - e^2/|z|) \Psi(z) = E \Psi(z)
$$

$$
-\infty < z < \infty, \ \Psi(0) \neq 0
$$

variational method for ground state energy:

$$
\Psi(z) \sim exp(-|z|/b);
$$

$$
\langle V \rangle \sim \ln(1/\epsilon)
$$

$$
d = 1 \Longrightarrow d = 3 \text{ at } z < a_H \equiv 1/\sqrt{eB}
$$

$$
V(z) = 1/\sqrt{z^2 + a_H^2}
$$

$$
\ln(1/\epsilon) \Longrightarrow 2\ln(a_B/a_H) = \ln(B/(m^2 e^3))
$$

$$
E_0 = -(me^4/2) \times \ln^2(B/(m^2e^3))
$$

first excited level: $\Psi_1(0)=0, E_1 \Longrightarrow -me^4/2 \,\,(B \Longrightarrow \infty);$ degeneracy of add and avon loveler the aphymendegen degeneracy of odd and even levels; the only nondegeneratelevel - $E_0 \Longrightarrow -\infty$ Loudon (1959); A.N.Sisakyan...

Definitions (for this talk): $B > m_e^2 e^3$ - strong $B,\, B > m_e^2/e^3$ -
superstrong B.

superstrong ^B

QED loop corrections to photon propagator drasticallychange this picture for $B >> m_e^2/e^3.$ Dirac equation spectrum in ^a constant homogeniousmagnetic field looks like:

$$
\varepsilon_n^2 = m^2 + p_z^2 + (2n+1)eB + \sigma eB \quad , \tag{1}
$$

where
$$
n = 0, 1, 2, ..., \sigma = \pm 1
$$
 (Rabi, 1928,
\n $2n + 1 + \sigma \Longrightarrow 2j, j = 0, 1, 2, ...$)
\n $\epsilon > m / e$ - ultraralativistic electrons: the

 $\varepsilon_n \gtrsim m/e$ - ultrarelativistic electrons; the only exception is
the lowest Landau level (LLL) which has $n=0$, $\sigma=-1$ the lowest Landau level (LLL) which has $n=0,\,\sigma=-1.$ We will study states on which LLL splits in the field of nucleus.

Hydrogen atom: electron on LLL moves along axis z ; proton stay at $z=0.$ What electric potential does electron feel? Let us look at $D = 2, d = D - 1 = 1$ QED.

$D = 2$ QED: screening of Φ

$$
\Phi(\bar{k}) \equiv A_0(\bar{k}) = \frac{4\pi g}{\bar{k}^2} \; ; \; \; \mathbf{\Phi} \equiv \mathbf{A}_0 = D_{00} + D_{00} \Pi_{00} D_{00} + \dots
$$

$$
mv + \rho_0 w + \rho_1 w_2 w_3 + \dots
$$

Fig 1. Modification of the Coulomb potential due to thedressing of the photon propagator.

Summing the series we get:

$$
\Phi(k) = -\frac{4\pi g}{k^2 + \Pi(k^2)}, \quad \Pi_{\mu\nu} \equiv \left(g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right)\Pi(k^2)
$$
 (2)

$$
\Pi(k^{2}) = 4g^{2} \left[\frac{1}{\sqrt{t(1+t)}} \ln(\sqrt{1+t} + \sqrt{t}) - 1 \right] \equiv -4g^{2} P(t) ,
$$

$$
t \equiv -k^{2} / 4m^{2}
$$
 (3)

Taking $k=(0,k_\parallel),\,k^2=-k_\parallel^2$ for the Coulomb potential in the coordinate representation we get:

$$
\Phi(z) = 4\pi g \int_{-\infty}^{\infty} \frac{e^{ik_{\parallel}z} dk_{\parallel}/2\pi}{k_{\parallel}^2 + 4g^2 P(k_{\parallel}^2/4m^2)},
$$
\n(4)

and the potential energy for the charges $+g$ and $-g$ is finally: $V(z) = -g\Phi(z)$.

Asymptotics of $P(t)$ are:

$$
P(t) = \begin{cases} \frac{2}{3}t, & t \ll 1 \\ 1, & t \gg 1 \end{cases} . \tag{5}
$$

Let us take as an interpolating formula for $P(t)$ the following expression:

$$
\overline{P}(t) = \frac{2t}{3+2t} \quad . \tag{6}
$$

We checked that the accuracy of this approximation is not worse than 10% for the whole interval of t variation, $0 < t < \infty$.

$$
\Phi = 4\pi g \int_{-\infty}^{\infty} \frac{e^{ik_{\parallel}z} dk_{\parallel}/2\pi}{k_{\parallel}^2 + 4g^2(k_{\parallel}^2/2m^2)/(3 + k_{\parallel}^2/2m^2)} =
$$
\n
$$
= \frac{4\pi g}{1 + 2g^2/3m^2} \int_{-\infty}^{\infty} \left[\frac{1}{k_{\parallel}^2} + \frac{2g^2/3m^2}{k_{\parallel}^2 + 6m^2 + 4g^2} \right] e^{ik_{\parallel}z} \frac{dk_{\parallel}}{2\pi} =
$$
\n
$$
= \frac{4\pi g}{1 + 2g^2/3m^2} \left[-\frac{1}{2}|z| + \frac{g^2/3m^2}{\sqrt{6m^2 + 4g^2}} \exp(-\sqrt{6m^2 + 4g^2}|z|) \right]
$$

In the case of heavy fermions $(m\gg g)$ the potential is given — І. by the tree level expression; the corrections are suppressedas g^2/m^2 .

In case of light fermions $(m\ll g)$:

$$
\Phi(z) \bigg| m \ll g \quad = \begin{cases} \pi e^{-2g|z|} & , \quad z \ll \frac{1}{g} \ln\left(\frac{g}{m}\right) \\ -2\pi g\left(\frac{3m^2}{2g^2}\right) |z| & , \quad z \gg \frac{1}{g} \ln\left(\frac{g}{m}\right) \end{cases} \tag{8}
$$

I am grateful to A.V. Smilga who noted privately that in thecase of light fermions in $D = 2$ QED a massive pole in a
photon propogator emerges photon propagator emerges.

D ⁼ ⁴ **QED**

$$
\Phi = -\frac{4\pi e}{k^2 + \chi_2(k^2)} =
$$
\n
$$
= \frac{4\pi e}{(k_{\parallel}^2 + k_{\perp}^2) \left(1 + \frac{\alpha}{3\pi} \ln\left(\frac{2e}{m^2}\right)\right) + \frac{2e^3B}{\pi} \exp\left(-\frac{k_{\perp}^2}{2eB}\right) P\left(\frac{k_{\parallel}^2}{4m^2}\right)}
$$
\n(9)

Batalin, Shabad (1971), Shabad (1972,...); Skobelev(1975), Loskutov, Skobelev(1976): $B >> m^2/e, \; k_\|^2 << eB$

Linear in B term in photon polarization operator originates from the LLL parts of electron propagators. In coordinaterepresentation transverse part of LLL wave function is: $\Psi \sim exp((-x^2-y^2)eB)$ which in momentum representation gives $\Psi \sim exp((-k_x^2-k_y^2)/eB).$

Holding only LLL in spectral representation of electronGreen functions and integrating their product over $\mathit{dk_xdk_y}$ we get factor eB , while longitudinal and time-like parts of propagators are that of free electrons.

Loskutov, Skobelev(1983); Kuznetsov, Mikheev, Osipov(2002): in superstrong B photon "mass" emerge.

$$
\Phi(z) \bigg| |z| \gg \frac{1}{m} = \frac{e}{|z|}, \quad V(z) \bigg| |z| \gg \frac{1}{m} = -\frac{e^2}{|z|}
$$
 (10)

$$
\Phi(z) \bigg|_{\frac{1}{m}} \gg z \gg \frac{1}{\sqrt{eB}} = e \int_{0}^{\infty} \frac{\exp\left(-\sqrt{k_{\perp}^{2} + \frac{2e^{3}B}{\pi}}|z|\right)}{\sqrt{k_{\perp}^{2} + \frac{2e^{3}B}{\pi}}} k_{\perp} dk_{\perp} = \frac{e}{|z|} \exp\left(-\sqrt{\frac{2e^{3}B}{\pi}}|z|\right) ,
$$

$$
V(z) = -\frac{e^{2}}{|z|} \exp\left(-\sqrt{\frac{2e^{3}B}{\pi}}|z|\right) .
$$
(11)

atomic levels

$$
E_0 = -2m \left(\int_{a_H}^{a_B} U(z) dz \right)^2 \tag{12}
$$

We split the integral into two parts: from $1/m$ to a_B , where
the sereoping is absent (large s) the screening is absent (large z),

$$
I_1 = -\int_{1/m}^{a_B} \frac{e^2}{z} dz = -e^2 \ln(1/e^2)
$$
 (13)

and from the Larmour radius $a_H = 1/\sqrt{eB}$ to $1/m$, where the
especies essure (small u): screening occurs (small z):

$$
I_2 = -\int_{1/\sqrt{eB}}^{1/m} \frac{e^2}{z} \exp(-\sqrt{e^3 B} z) dz = -e^2 \ln(1/e) . \tag{14}
$$

Finally we get:

$$
E_0 = -(me^4/2) \times \ln^2(1/e^6) = -(me^4/2) \times 220 \tag{15}
$$

Freezing of ground state energy. Without screening $I = -e^2 \ln(a_B/a_H)$, $E_0 = -(me^4/2) \times \ln^2(B/m^2e^3)$

Shabad, Usov (2007,2008). Analogous consideration towhat I told for $D=4$ + numerical estimates;
220 \times 205, 152 \times 172 $220 \Longrightarrow 295; 15^2 \Longrightarrow 17^2$

Sadooghi, Sodeiri Jalili (2007) - $D = 4$, shape of potential,
ozimuthel.covmmetry: dynamical.mass.of electron azimuthal asymmetry; dynamical mass of electron.

When B increases further Larmour radius approaches the size of a proton. This happens at $1/\sqrt{eB}\approx 1/m_\rho, \, m_\rho=770$ MeV, $B\approx10^{20}$ gauss. Taking into account the prot formfactor we get that for larger fields I_2 does not contribute $\approx 10^{20}$ gauss. Taking into account the proton
ior we get that far lerger fields I, deep not ee to the energy, factor 220 should be substituted by 100: theground level goes up.

Excited levels: corrections from screening should be larger for even states (Karnakov, Popov); degeneracy of even andodd states at $B\longrightarrow \infty$ occurs and is not influenced by
screening (Loudon) screening (Loudon).

Conclusions

- ground state atomic energy at superstrong B the only
known (for me) cose when redictive "correction" known (for me) case when radiative "correction"determines the energy of state
- analytical expression for charged particle electricpotential in $d = 1$ is given; for $m < g$ screening take place at all distances
- asymptotics of potential at superstrong B at $d=3$ are found confirming existing in literature results
- limit of ground state energy for $B >> m^2/e^3$ is determined analytically: $E_0=-(me^4/2)\times\ln^2$ $B > 10^{20}$ gauss: $e^6 \longrightarrow e^4$ $(m e^4$ $^{4}/2) \times \ln^{2}(1/e^{6})$ $^6);$ $\,e\,$ 6 $\circ \longrightarrow e$ 4
- one more argument against existence of B_{cr} , at which upper and lower continuums merge