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for the strong interactions at small distances. The matrix element <K°|H*"|K"y is calculated by means of the

S ————
vacuum insertion. Formulas are given for the mass difference Amg of the K, and K mesons and for the L?/f__ 1/1' Q2 ( 1
parameter £ of CP violation. The parameters of the six-quark model—the quark mixing angle 6, and the CP- ,—; )
odd phase § —are determined for three values of the mass of the ¢ quark (m, = 15, 30, and 60 GeV). 2
§=
PACS numbers: 11.30.Jw, 14.40.Fw, 12.40.Cc = W,

1. INTRODUCTION

The most popular model of the weak interaction at the
present time is the six-quark generalization of the
Weinberg-Salam scherne,1 in which the charged cur-
rents are described by the Kobayashi—Maskawa ma-
trix? One of the virtues of this model is the natural
appearance of the CP-odd phase in the matrix of the
charged currents. In this paper, we consider the tran-
sitions K* —~K" in the six-quark scheme with allowance
for the strong interaction. We take into account the
strong interaction in two stages: first, the gluon ex-
changes at small distances are summed in the frame-
work of the renormalization group in the calculation of
the coefficient function of the effective Lagrangian with
As =2; second, in the calculation of the matrix ele-
ment of the effective Lagrangian between the X° and
K mesons, we use the results of the vacuum insertion,
which phenomenologically take into account the strong
interactions at large distances. The K°—K° transition
was considered in the four-quark model with allowance
for the strong interaction at small distances in Ref. 3.
In Ref. 4 the K ~K? transition was considered in the
six-quark model with no gluon exchanges at small dis-
tances.

After calculating (K°|- %%, |K%, we obtain expres-
sions for the K, -K s mass difference Amy s and for the
parameter € of CP violation in terms of the parameters
of the six-quark model.

The violation of CP invariance in the Kobayashi-
Maskawa model was considered in Refs. 5 and 6, and
in Ref. 7 bounds were obtained on the difference be-
tween the parameters of CP violation in the decays K;
=1 and K, —~ 70 in this model. In Sec. 6 we show
how the results of our work enable us to improve the
accuracy of the numerical estimates of Ref. 7, and we
Present more precise values of |&'/¢|.

The plan of the subsequent exposition is as follows.
In8ec. 2 we recall the general properties of the Kobay-
8hi-Maskawa model. In Sec. 3 the transition ds —sd
i8 considered in the free-quark approximation. In Sec.
4 we consider the gluon corrections to the ds —sd tran-
8ition and obtain the effective Lagrangian £ with AS
=2. InSec. 5 we calculate the matrix element (K|
=~ %52 |K% and give expressions for Amys and ¢.
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Numerical estimates are presented in Sec. 6.

Let us indicate how our work differs from the papers v
of Ref. 4. In Ref. 4 the Lagrangian of the ds — sd /v,ét "
transition was calculated in the free-quark approxima-
tion, whereas we take into account the effects of gluon
exchanges at small distances in the leading logarithmic Z/ }
approximation. In the calculation of the matrix ele-
ment (K° |-fas-z |[K%, Shrock et al. used the result of the

bag model’; Barger et al. considered two methods of / L
calculating the matrix element, the bag model and the [= ;4
vacuum insertion, and they gave numerical estimates

for both methods without assigning a perference to 9, 1
either of them. We argue that the most accurate esti- 7\‘£>>M1u

mate of the matrix element is given by the vacuum in-

sertion. A numerical comparison of our results with

those of Ref. 4 is given in Sec. 6. é
% 2 ©:
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2. THE KOBAYASHI-MASKAWA MODEL

Since the discovery of the I/ meson, four quarks
(u, d, s, ¢) and four leptons (e, Ve, Ky v,) have been in-
cluded in the weak interactions. The theory was then
free of anomalies, and at high energies (much greater
than the quark masses) the nondiagonal neutral current,
which is absent in the bare Lagrangian but arises as
a result of radiative corrections, was suppressed—the
GIM mechanism® operated. Since then, there have been
been discovered a third lepton, the 7, whose decays
are evidently accompanied by the production of a third
neutrino, the v,, and also a new vector meson, the
7(9.46), which consists of the quarks b5 with charges
+3. These new particles are most readily included in
the previous weak-interaction scheme if it is assumed
that there exists a sixth quark (the ¢) with charge +%,
which appears in a single weak isodoublet with the b
quark. In this case, the theory remains free of an-
omalies and is renormalizable. At the present time,
it is known from Lederman’s experiment on the # quark
that, if this quark exists, its mass is greater than 10
GeV. This limit has been raised to 14 GeV in experi-
ments at PETRA by Ting’s group.

Let us consider the form of the charged currents in
the six-quark model. The most general form of the
currents is ¢,Uq., where g’, is the row of ano-quarks
(4, ¢, t) and g, is the column of catho-quarks (d, s, b);
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the Lorentz structure of the current is 7,(1 +7%). The
matrix U is unitary. The unitarity of U is a conse-
quence of two physical requirements: the universality
of the weak interaction, 23, |U al*=1, and the sup-
pression of the nondiagonal neutral currents due to the
W-boson loops, 2 4. U‘.U,.Im =0. Inthe Weinberg-
Salam model, the quark masses are equal to zero, and
U=1, before the displacement of the Higgs field; then,
with the development of the vacuum average, the quark
fields become “distorted” —the states with definite mass
are nondiagonal with respect to the weak interaction,
and the transition to states with definite mass involves
a unitary matrix U different from unity.

We shall describe the standard parametrization of the
matrix U.® A unitary matrix #z® »n is characterized by
n* real parameters. An orthogonal matrix n® n is
characterized by n(n - 1)/2 parameters. Thus a uni-
tary matrix nXn is specified by n(n — 1)/2 angles and
n(n+1)/2 phases. However, in the case of the matrix
of the charged currents, some of the phases can be eli-
minated by multiplying ¢% and ¢, by ¢**. As a result,
there remain n(n+1)/2 =1 = (2n - 2) = (n* - 3n +2)/2
independent phases, which characterize the matrix of
the charged currents in the Weinberg— Salam model that
unifies the 2n quarks. In the four-quark model, there
are no phases and it is not possible to accommodate
CP violation in the interaction of quarks with W bosons.
The six-quark model has one CP-odd phase and three
Cabibbo-like angles. We write the matrix U in brackets
in a form which we shall use in what follows:

(51 — 8103 — 85153 d
(Get)| sica €10203 — S353€i® 16085+ sacq6 || s |; (1)

$183  €189C3 + C2836"0 15985 — cacaeid ) \b
here c¢; and s; are the cosines and sines of the cor-
responding angles.

It is easy to conclude from the foregoing that the ang-
les 6y, 6,, and 63 can be assumed to vary within the
interval O to 7/2, and we shall assume that the phase 6
is restricted to the interval —7 to 7.)° We note here,
however, that if the masses of any of the ano- or
catho-quarks were equal, then the resulting additional
symmetry would make it possible to transform away
the phase 6, and the CP violation would disappear.’

An analysis of experimental data on 8 decays of nu-
clei, semileptonic decays of hyperons, and K,; decay
gives sing =0.23 and sin6 < 0.5.

3. THE TRANSITION ds—~sd IN THE FREE-QUARK
APPROXIMATION

The transition ds —sd is determined by the diagrams
of Fig. 1.

The calculation of the box diagrams of Fig. 1 is very
simple. However, we consider this calculation in de-
tail, anticipating the “dressing” of these diagrams by
gluons, which we will encounter in Sec. 4. We hence-
forth neglect the masses of the light («, d, s) quarks and
the momenta of the external particles. We also neglect
mﬁ/ m% in comparison with unity throughout the paper.
We give the expressions for the propagators of the W
bosons and charged Higgs particles (Ref. 12)” and for

798 Sov. J. Nucl. Phys. 31(6), June 1980

4 uct s d (¢) s d (¢) s
/
WE EW X7 H§ gH “ZL Wi ;/7’
s uctd s () d s (t) d
a b c

FIG. 1. Diagrams which generate the transition ds — sd@. The
fermion propagators in diagrams b and c are labeled (), since
it follows from the text that it is sufficient to consider only the
exchange of ¢t quarks in these graphs.

the Wgq and Hgq transition vertices in the Weinberg-
Salam model in the @ gauge, which are needed to cal-
culate the graphs of Fig. 1:

2 — 2 . /102
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In the formulas given below, g =sycod+ (c1cy05 — Sp8

- s253¢")s; using (1), we can immediately write down
the analogous vertices in which the ¢ quark is replaced
by the u or ¢ quark:

—»—L _‘Wuql Yu(1+ys)etHe. , (C)

= T;IW[Q,\ (1—1s) cH+e(1+ys) gx H*]. (D)

In what follows, we employ the gauge of 't Hooft and
Feynman, in which a=1.

Let us calculate the diagram of Fig. 1. The factor 1
indicated in Figs. 1a and 1b occurs when e'” is exposed
according to Wick’s rules. It is possible for », ¢, and
t quarks to propagate along the internal fermion lines of
Fig. la. Using the unitarity of the matrix (1), we sub-
tract b,/p from the propagators of the u, ¢, and ¢
quarks, where p is the momentum flowing in the loop
and b; is the product of the angles of the matrix (1) at
the Wgq vertices. We are thereby subtracting zero,
since 27b;=0 (see Sec. 2). After this, the propagator
of the u quark drops out and we are left with diagrams
involving the propagation of ¢ and ¢ quarks, whose
propagators take the form m? ,/(p® = m? ,)p. It now
remains for us to calculate the Feynman integrals
corresponding to three different cases: 1) ¢ quarks
propagate along the upper and lower lines; 2) f quarks
propagate along the upper and lower lines; 3) a ¢
quark goes along one line,and a { quark along the other.

To simplify the expressions containing ¥ matrices, it
is convenient to apply a Fierz transformation. After
a Wick rotation, the integral corresponding to the first
case takes the form [ d*pmiMy /(p® + m2)p(p? + M3 ).
This integral has a power convergence for pz =mf.; we
contract the W-boson propagators to a point and write
down the result: 7. The integral corresponding to the
second case has the form [ d pm,Mw/(p +mi ¥ (pt
+ML)?. 1t is clear that when mt < M% this integral is
equal to m2[1 +O(m?/M% InM% /m?)] and, if we are in-
terested in f-quark masses <30 GeV, we can equate it
to m?. However, if we are interested in larger values
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of m;, we must evaluate it exactly without contracting
the propagators of the W bosons. Thus, in the second
case, as in the first, the Feynman integral has a power
convergence for p? :mf. The third integral has the
form fdﬂbmﬁmf}"l.‘y/(‘i)2 +ml)(p + mi)p(p? +ML2. We
recall that since m, > 10 GeV, we have mi/m:>1. The
integral is equal to m? In(m2/m?), since in the region
mi/ME <1 we are contracting the propagators of the W
bosons and the correction behaves as a small power [as
(m?/M2) In(M}, /m?)], while in the region m2/M2 ~1 we
can assume that In(m?/m?) is large and that the correc-
tion is O(1). Thus, in the third case we are dealing
with a logarithmic integral.

The final expression for the contribution to -?;532 from
the diagram of Fig. 1a is as follows:

4
.<?As-z=—W{s(y.,(1+1,)d]=(A,+A.+A,+A:"'+A‘,' ), (2a)

Ai=m;s’c, [ e (2p)
. My
A,=m,’s,’s,2 (c,s.c.+c,s.e"°) ’[ W

z 2 2 4 2

m My 2m, My My
O —my = ] (2¢)

(M —m?) (m*—M3,))
2

A;=m: In _:li; 28:018: (cncacs-sr’ae_“) (clslcl+c!sle_m) . (2d)

e

Here A" and A¥ denote the contributions from the dia-
grams of Figs. 1b and 1c, which are calculated below.
We note that the expression in the square brackets in
(2c) has no pole at m? =M% and is equal to 5 at this point.

Let us turn to the calculation of the graphs of Figs.
Ib and 1c. These graphs include exchanges of charged
Higgs particles, whose emission vertices contain the
small factor m,/M, in comparison with the W-boson
emission vertex. This factor may not be small for a
sufficiently heavy ¢ quark. We shall show that it is
permissible to consider only the propagation of ¢
quarks along the internal fermion lines in the graphs
of Figs. 1b and 1c, and we shall calculate the corre-
Sponding contributions. We begin with the graph of
Fig. 1b. Ifa ¢ quark propagates along each of the two
fermion lines, it is easy to see that the contribution
from the graph of Fig. 1b is suppressed by a factor
/My in comparison with the quantity A,. But if a ¢
luark propagates along one line and a ¢ quark along the
ther, then we lose the large logarithm In(m?/m? in
‘omparison with Ay (the logarithm is actually large if
ne > My, but if m} <M, there is a power-law suppres-
don m?/M? in comparison with A). Thus we see that
t 18 permissible to consider only the propagation of ¢

uarks along both fermion lines in the graph of Fig. 1p.
‘he Feynman integral which determines A¥¥ has the
orm [ p*atp /(p? +MEP(p2 +m2R. We are interested
a its value for m? =Mj, since when m} < M2 the con-
ribution from the graphs involving the exchange of
[A‘?B Particles is suppressed as mi/M%. When m?

w, the integral has a power behavior and acquires

8 Value mainly from the region p? =M. The expres-
lon for Af¥ ig a5 follows:
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HH 22 2
Ay =m,s, s, (c,s,c,+c,s.e“°)'

2m My m | mi(My+m?)
4, —m2)* Nap 4(M'w—m:)']

(2e)
The quantity A3'¥ has no pole at m: =M%, and the ex- 3
pression in the square brackets is equal to 1/12 at this 5
point (to be compared with + in the case of A,). ;

We turn now to the graph of Fig. lc. If a ¢ quark
propagates along one or both fermion lines, we have
the same suppression in comparison with A, and 4 as |
in the diagram of Fig. 1b. Let us take ¢ quarks along i
both lines. The Feynman integral which determines ;
A7 has the form [ d*/( P+ md(p? +Mo); we are in-
terested in the region mf =M5, in which this integral
has a power behavior and acquires its value mainly
from the region p2 =M§,. Thus we obtain

2..3 . 2 2 2 3.3
Azﬂ'—‘nl,zb‘fSz(clszc;+czsse~m)EI\Z”L‘MW("L( +MW) ln&_!\4ﬂth ]'
J M? —m?)? m? (M? —m?)?
( w t ' w t

(2f)
When m; =M}, the expression in the square brackets is

equal to .

This completes the calculation of .%s,, in the free-

quark approximation. The expression for it is given in
Egs. (2a)-(2f).

4. CALCULATION OF £ WITH ALLOWANCE
FOR THE STRONG INTERACTION

In the Preceding section, we obtained an expression
for %5, in the free-quark approximation. In this sec-
tion, we take into account gluon exchanges at small dis-
tances and obtain an expression for the effective La-
grangian ¥%,. This program was carried out in the
four-quark model in Ref. 3. What is new in compari-
son with Ref. 3 is the presence of the ¢ quark and the
need to dress the diagrams involving exchanges of
Higgs particles (Figs. 1b and 1c) with gluons. The
scheme of determining the coefficient function of %5,
is standrad and reduces to the following two items. We
take the bare diagram and dress it with one gluon in all
possible ways that give In(p?/p?). The problem of op-
erator mixing then becomes completely transparent,
and both the set of multiplicatively renormalized oper-
ators and the first term of the expansion of [g(p})/
gX(p3)T in powers of g* can be determined in a trivial
manner. The second stage consists in the determina-
tion of the index ¥ from the first term of the expansion
found in the first stage, and this also present no diffi-
culty. Our use of the renormalization group differs ;
from the well known applications in that we have a
single-loop graph even in the absence of gluon loops. !
In this case, the calculations are performed in the
following order. We fix the momentum p flowing in the
loop which contains no gluons and dress the resulting i
diagram with gluons, finding the anomalous dimensions i
Y. Then, finally, we calculate the integral with respect &
top. This last integral has the form TAPYa*p[ g% (p2)/
g*(p})T, and here we must distinguish two cases. If "
the integral [f(p*)d*p has a power behavior, we obtain ?
the result for it by multiplying [ f(p?)a*s by [#(p3)/

gz(pf)]’, where p; is the momentum for which the inte-
gral [ f(p*)d*p converges. But if the original integral

799 ;
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is logarithmic, we must calculate [ fé ap*/p* g4 (p?)/
£2(p1)T exactly. A thorough discussion of the need for
an accurate calculation of logarithmic integrals is
given in Ref. 13 in connection with the decay K; —2u.
This concludes our general remarks, and we turn now
to the concrete calculations.

We begin with the dressing of the graph in Fig. la.
The Landau gauge of the gluon propagators is most con-
venient for the separation of the logarithms, and we
shall use this gauge in what follows. In the Landau
gauge, the anomalous dimensions of the fermion propa-
gators are equal to zero, and allowance for the gluon
dressings Gglg) in the leading-logarithm approximation
(Fig. 2) reduces to the appearance of a logarithmic fac-
tor multiplying mpg:

b g*(m;) 2 | —i/b
m,—-m,(1+a ™ lnq;:) .

where b=11- 2N, in which N, is the number of quark
flavors present in the logarithmic region (¢* > m?);

the anomalous dimensions —4/b can be most readily
determined by calculating the single-loop graph of Fig.
2b, but the leading logarithms for Gr(q) were selected
for the first time in Ref. 14,

Let us consider what gluon exchanges in the graph of
Fig. la, besides the dressing of the quark propagator

which we have already considered, can give a logarithm.

Dressing of the vector and axial-vector vertices in the
Landau gauge gives no logarithms, nor are logarithms
obtained from the “transport” of a gluon across several
such vertices along one and the same fermion line, so
that the graphs of Figs. 3a and 3b do not contain any
logarithm. There is also no logarithm in the graph of
Fig. 3c, since it can be reduced to that of Fig. 3d by
means of a Fierz transformation. Thus we have ob-
tained a simple and perspicuous rule: graphs which
contain gluon exchange along a fermion line, or which
can be reduced to such graphs by means of a Fierz
'transformation, contain no logarithms. There remain
two graphs of the type shown in Fig. 4a, and four of
the type shown in Fig. 4b, containing logarithms. We
begin with the graph of Fig. 4a and consider in what
region of integration with respect to the gluon momen-
tum ¢ it is logarithmic. The two fermion propagators
and the gluon propagator ensure a logarithmic behavior
in the region p? <g¢® <p?, where for the lower limit we
take p* such that g?(u?)/47=1, hoping that an arbitra-
riness in the choice of u* does not result in a large
error; the upper limit is the momentum at which the
third quark propagator comes into play and cuts off the
logarithmic integral. It is easy to understand that this
occurs when q2 = pz. We must now calculate the graphs
of Fig. 4a at fixed p, see that operator mixing does not
occur—there is only a single operator 5,7, (1 +vs)
Xd;S;7«(1 +vs)d; (@ and j are color indices), and collect
the leading logarithms. The following two identities
for the v and ¢ matrices are helpful in the calculation:

a b c d

FIG. 2. Dressing of the quark propagator.
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FIG. 3. Graphs which do not contain logarithms in the Landan
gauge.
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(the gluon emission vertex has the form gA2gy,t%).
The calculation leads to a factor [ g%(k?)/g%(»*)]*” in
the integrand of the integral with respect to d‘p, where
b=11-iN,. We shall consider here the value of N,.

It is equal to the number of quark flavors which can be
assumed to be massless in the momentum region that
gives the main contribution to the logarithms of the re-
normalization group, and b can vary between 9 (N, =3)
and 7 (N;=6). Actually, in the cases under considera-
tion p? is always less than M3, and the b and ¢ quarks
do not become logarithmic [i.e., In(M%/m?) does not
become large in comparison with unity]; thus, we shall
encounter the values b=9 (N;=3) and 25/3 (N,=4).
For p* =M}, it is perhaps possible to assume that the b
quark (m, =5 GeV) is also logarithmic. However, the
distinction between the numerical values of b for N, =4
(25/3) and N, =5 (25/3) is very small and does not lead
to appreciable numerical differences.

We turn now to the graphs of Fig. 4b. To investigate
their dressing by gluons, we cut them along the two
internal fermion lines. We then see that each of the
halves of the diagram is an analog of the operator whose
renormalization was studied in Ref. 15 in connection
with the AT =3 rule in nonleptonic decays with AS=1.
Let us see what region gives the main contribution to
the logarithm in the graphs of Fig. 4b. The propaga-
tors of the gluon and the external (d or s) quark give
three powers in the denominator, and the missing fourth
power must come from the propagator of the internal
quark. The upper limit of the logarithmic integral is
cut off at ¢* =M% by the propagator of the W boson. By
analyzing the propagator of the internal quark, it is
easy to understand that the region of logarithmic be-
havior is M% > ¢* >p?. Thus, using the result of Ref.
15, we see that each of the halves of the diagram of
Fig. 4b is renormalized as follows:

£ 1
goryl %7

‘ ‘ 2 e
F¥a (1H75) 4iGaya (1+7s) dy — [ g ] a.

g)
0.="12[Giya (1+7s) disiYa (117s) G iYa (1+7s) g&xYa (11+7s) dal,

where g denotes a #, ¢, or { quark. The formulas
gives above differ from the analogous ones of Ref. 15
in that p? is replaced by p*. We must now link these

a ¢ Pty s a g 5
T T
Y g+p s
sop g d s rq d
a b

FIG. 4. Graphs which give a logarithmic renormalization.
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halves, using Wick’s rules. The final result for the
factor in the integrand of the diagram of Fig. 4b is

i 18y 3 &) 1 | 31 &) 17

7[}(7“)] _[g=<M:,>] 3 lgary)
(this formula, with pz replaced by mf,, is given in Ref.
3). The factors corresponding to the diagrams of Figs.
4a and 4b were obtained in Ref. 3, but since the four-
quark model was considered in Ref, 3, the external
integrals were the same and converged according to a
power law to 7% [which corresponds to A; in (2b)], and
also p* was everywhere replaced by m%. Here we have
three integrals (4;, A,, and 4,), and we shall now write
out the factors which renormalize them. Let us denote
them by 7, 7, and 75, so that the contribution to Lt 2
from the diagrams of Fig. 1a dressed with gluons has
the form )

A+, 40,4, (3)

Since the integrals with respect to d* for 4, and A,
have a power behavior, we can immediately write down
the results for 7, and T

el ]S

(L] g, @
v | [E585]™

-[Lmd] e d L™ (5)

In the calculation of M3, we must remember that the
integral which determines Aj; is logarithmic and that
the result for Ay contains m: In(m?/m?). Therefore, to
calculate n;, we must take into account the renormali-
zation of m, and evaluate the integrals with respect to
(dp®/p®)(Inp*®)* exactly without removing (Inp2)*from the
integral signs, where P1 is one of the limits of integra-
tion. Doing this, we obtain

- [ ]J/- 3162 1[g'(m:> ]'

In(mi/m3) | g*(m3) | Z5g7md) | T | g arty)

<7~ (en ) - [ ] o[- (5p)"]

3[_em } 225[ M) =" ]
t3 [gz(mv) 67 (g’(m:)) =4 } (6)

We stress that n,, Tk, and 73 reduce to unity when the

8trong interaction is switched off. For m; and 7, this

is immediately obvious, and in the case of 7; we must

expand gz(mf)/gz(mi) in the curly brackets in (6), re-
the term ~g2(m§).

R remains for us to add gluon dressings to the graphs
of Figs. 1b and 1¢ containing exchanges of Higgs par-
tcles. We begin with the graph of Fig. 1b. By direct
Calculation, it is easy to see that the graphs of Figs.
8 and 5b contain no logarithms. The gqH vertex,

When dressed with a gluon (Fig. 6a), contains a loga-
| m Which is not cut off in any way and which form-
‘"’ goes to infinity, and this compels us to pay special
i mtion to this graph. If H were not a Higgs particle,
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a b

FIG. 5. Graphs which do not give a logarithm in the Landau
gauge.

but an ordinary scalar particle, we would have to fix
the gqH vertex at some point, and this would create a
prescription for the calculation of the gluon loop in

Fig. 6a. However, H is the Higgs boson of the rigid
Weinberg—Salam scheme, in which introduction of the
counterterm 8cs(1 - y5)tH is forbidden by isotopic in-
variance. The only counterterm which can be intro-
duced in the interaction of Higgs particles with quarks
is the counterterm 6fY; ¢,H of quark-mass renormaliza-
tion by the strong interaction, where the value of of is
uniquely fixed by the requirement that the renormalized
quark mass should be equal to the observed value. It is
remarkable that this same quantity 6f removes the di-
vergent logarithm in the interaction of the physical neu-
tral and unphysical charged Higgs particles with the

qq pair. Thus the graph of Fig. 6a contains g In(M2/
mf) and, since Higgs exchanges are important only for
m} =Mj,, it can be neglected. Consequently, exactly as
in the case of the exchange of two W bosons, we are
left with the graphs of Figs. 6b and 6¢c. The graph of
Fig. 6c is not important when In(M /m?) =1; selection
of the leading logarithms in the graphs of the type
shown in Fig. 6b gives

g (1) J‘”-
Ngpy = | =2 |7, 7
" [ 8* (M) i
If the graph of Fig. 1c is dressed by exactly the same
procedure as that which we have just carried out, we
find
Nu=Mau. (8)

To conclude this section, we give the formula for

off .
AS=2¢

4
eff
LiS=g=—

S .~

32.16n2 My
§ HH H

X [MmAL + ny4z + n3ds + NggA™" + 045 |;

5y, (1 + v5) dJ?
[5v, (1 + v5) d] (9)

the expressions for 7,-n, are given in (4)-(8), and
those for A;-Af are given in (2b)-(2f). This completes
the calculation of ¥5&f,. It now remains for us to find
its matrix element between the K° and K° states, after
which we can immediately obtain formulas for Amyps
and for the parameter ¢ of CP violation.

5. CALCULATION OF (K° |zt .

€ IN THE SIX-QUARK MODEL

IK®), Am, ¢, AND

In the preceding sections, we have calculated £, .

To calculate Amys and €, we must now find the matrix
element (K°|5v, (1 + Y5)dsY, (1 +%)d|K%? To do this,
we isolate the product of the currents in %, and

IR YA SH IH
[ I Ty
“ b c

FIG. 6. Graphs which produce a logarithmic renormalization.
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saturate it with all possible intermediate states:
(Kﬂ|§¢'Ya(1+‘Ys)d.‘§n"{u(1+15)dulko>

=1, Y KI5t (1) dilm> alsige (1) 1K, (10)

where the factor 8/3 occurs because of the two types of
couplings of the color indices.

In the sum over intermediate states, we confine our-
selves to the two lowest states, the vacuum state and the
single-pion state.® As we shall see, the contribution of
the single-pion state turns out to be negligibly small in
comparison with that of the vacuum state, and this will
serve as the basis for the retention in the sum (10) of
only the first term—the vacuum insertion.

To calculate the contribution to the matrix element
(K| 4|R% from the vacuum intermediate state, we
make use of the relation (K°| 5,7, (1 +5)d; |0) =ifxP*.
We then obtain

(K"IE-fa(1+1,)dI0><0|§'{u(1+’h)dll?°)=—f;m,:.

Let us estimate the contribution from the single-pion
intermediate state. It is determined by the two graphs
of Fig.7. Using the form (K®|5%, (1 +y5)d| 1 =(1/V2)
(p, +Px), for the matrix element of the K- transi-
tion (we have neglected the contribution of the form
factor f. and replaced f.(¢") by its value at ¢ =0 in the
SU(3) limit), we obtain

1

MoAMy=—— [—29_(p+g)*+
A== ) Emyeg T ¢

1 &g i
—2_-“ (2n)’2(qo+2m,()(p_q) :

We truncate the integral with respect to the energy of
the pion at gp=A. We then obtain

CKO15Ya (1415) 1> (15 (1+7:) ALK

2
A+2
s [-3— A B A 10m Y n D ] .
4t L 2

2my

It is now necessary to understand at what value of A the
integral should be truncated. This must be a value of
A at which the strong interaction becomes weak and be-
yond which hadron-quark duality sets in. If we trun-
cate the integral above this value, we are again inclu-
ding the contribution which is already taken into account
by the quark diagrams of Figs. 1-6. A phenomenologi-
cal analysis of the vacuum average of the four-fermion
operator constructed from the u and d quark fields in
Ref. 18 shows that A must be set equal to =200 MeV.
Even if we overestimate the contribution of the pion
insertion and put A =500 MeV, this contribution
amounts to 10% of the vacuum contribution.

A calculation of (K°|[57, (1 + %)d[ |K®) in the MIT bag
model which was carried out in Ref. 8 led to the appear-
ance of a numerical factor 0.42 in front of the result for
the vacuum insertion. The foregoing discussion shows
that in a correct calculation this factor must be close

_ K
P9 P —
p
a b

FIG. 7. Graphs which determine the contribution of the single-

pion intermediate state to the matrix element (K L LKD),
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to unity, and we shall now indicate what might account

for the inapplicability of the bag model in the calcula-
tion of the matrix element in question. In the first
place, the K° meson is a Goldstone particle and its
mass should reduce to zero if the masses of the s and
d quarks are equal to zero. The bag model does notm
satisfy this requirement and cannot correctly describe
the physics of pions and kaons. In particular, our dis-
cussion shows that the matrix element (K°|[57, (1
+7)dlf |K® is almost completely determined by the
vacuum insertion and, consequently, by the value of
fx; on the other hand, the bag model does not repro-
duce the constants f, and fx. Finally, in the calcula-
tion performed in Ref. 8 the vacuum insertion was re-
placed by the insertion of an empty bag—a state which
is absent in the spectrum of physical particles, and this
is also unsatisfactory.

Thus, the combination of arguments presented in this
section shows that the following equality holds with
accuracy exceeding 10%:

K| [5ya (1F15) A1 I R =—"/smafx. (11)

We are now ready to write down the formulas for
Amys, we can assume that Ks=(K +K)/V2 and K,
=(K -K)/VZ, in which case

O (Mxe—Mxs) =<K°| Hasa| KO H<(K° | Has=s| K, (12)

where H,s.; =—%ss-2 and the factor 2mk 0 on the left-
hand side of (12) is due to the normalization of the kaon
field: (K°|H|K® =2m%0. We rewrite Eq. (12) once
again:

4 Txap
Amps = b L5 Rl At AmatAmeFAL Nunt Az nal, (13)

E mis" ct
where A;—A¥ and m-1, are given in Egs. (2b)-(2f) and
(4)-(8). Equation (13) expresses the mass difference
of the K; and K s mesons, which is known from experi-
ment, in terms of the parameters of the six-quark
model, many of which are still unknown at the present
time. In this connection, we represent (13) in the form
_L_Re[Am+...+AT na]=27GeV? (14)
§ L"
In the four-quark model, A; :misﬁ, Ay="" -Af =0, c§
=1, and 7, =0.6 (see below). Since m, =1.3 GeV,* the
necessity of the six-quark generalization of the four-
quark model is apparent.

Turning now to the parameter € of CP violation, we
write the general expression for € in the standard

notation: { n . ZQ);/Q

e= (mu—its) [ (my—ma iy, —ix2).
It is known fro eriment that 713 <<mjs.. In our ap-
proximation, 712 =0. The experimental value of the
phase ¢ is approximately 45°. Using this, we readily
obtain the following expression for the modulus of €:
lej= (KO| H|K°® — (K°| H|K® - Im[Aim + .- + AHnp) ~
SV IKK | H|K% 1 KO\ H|KD] 2 VZRelAm+..+ 42 ng)
(15)

The experimental value is |e| =2.3x10%.

Thus, we have obtained formulas [(13) and (15)] which
express the mass difference of the K; and Ks mesons
and the parameter ¢ of CP violation in terms of the
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parameters of the six-quark model. We now make
Some numerical estimates.

6. NUMERICAL ESTIMATES

Of the parameters of the six-quark model, we do not
know the phase 6 and the angle 6,. For the angle 63 we
know that siné, < 0.5, and for the mass of the ¢ quark
we know that m, >15 GeV. In this situation, we pro-
ceed as follows. We take two values of 6, correspond-
ing to sinfy=0.1 and sinf; = 0.3, and three values of
the t-quark mass, m, =15, 30, and 60 GeV. For these
six sets of pParameters, we find 6 and 0, satisfying Eqs.
(13) and (15), after which we write out the resulting
Kobayashi-Maskawa matrices.

We begin the estimates with an examination of the
role of the Higgs exchanges in Figs. 1b and lc. In
Table I we give the numbers appearing in the square
brackets in the formulas for A, (Eq. (2¢)] and AF# +Af
[Eqs. (2e) and (2f)]; this table shows how the relative
contribution of the Higgs exchanges varies with in-
creasing m,. We see that with increasing m, the rela-
tive contribution of the Higgs exchanges rises, and
their role leads to the maintenance of the sum of the
quantities in the square brackets in (2¢), (2e), and
(2f) at an approximately constant level: 0.98 at m, =15
GeV, and 0.83 at m; =60 GeV.

We turn now to the estimates of the renormalization
factors . The values of the strong-interaction con-
stants which we require are as follows (M, =84 Gev
and m, =1.3 GeV):

20002 2 (m? 3 2
M= . M:().z, iwi:oj; M:(“z; 0.11; 0.1
4nt 4n 4n 1

for m, =15, 30, and 60 GeV, respectively, and u — 80
MeV. [If we take =160 MeV, the strong-interaction
constants which we use change to gz(mﬁ)/41r=0.25,

g (M})/an=0.11, ang g%(m?)/41=0.14, 0.13, anq 0.11,
respectively. Thus we see that there is little change in
our results if the value of u is doubled.] We find n,
=0.6 and 7, =Tyy =0.6; the values of Tk and 73 are com-
piled in Table II. We see that 7, and 73 change very
little as m, varies from 15 to 60 GeV.

We are now ready to calculate 6, and 6 from Eqs.
(14) and (15) for each pair (m,, 6;) and, by substituting
them in the mixing matrix, to obtain this matrix.

The results of the calculations are compiled in Table

We remark that the existence of two solutions of the
8ystem of equations (14) and (15), corresponding to

TABLE 1. Growth of the contribu-

tions of Higgs exchanges in com-

Parison with the contribution of W-
exchanges with increasing m;.

—

’ m,, Quantity in the Sum of the quantities
square brackets in the square brackets
in Eq. (2¢) in Eqgs. (2¢) and (2f)

|
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TABLE II. Values
of the gluon renor-
malization factors
Ny and 73 for var-
ious masses of the
t quark.

—
m,
Ge' LH N

_ 1

15
30
60

0.58 0.46
0.59 0.42
0.60 0.4

cosb=+1, was noted in Ref, 4.

Let us compare our results with those of Ref. 4. The
paper of Barger et al. differs from ours in that it does
not treat gluon exchanges, i.e., all the quantities 7 are
equal to unity in that paper. Barger ef al. estimate the
matrix element in two ways: by means of the vacuum
insertion, and according to the bag model. As we point-
ed out in Sec. 5, the result of the bag model reduces to
the appearance of a factor 0.42 in front of the vacuum
insertion. Numerically, this factor is virtually the
same as the renormalization factors 1 which we have
taken into account. In this connection, our values of
S and sind are practically identical to those obtained
by Barger et al. with the value B=0.42. The numeri-
cal similarity of the results obtained by means of the
vacuum insertion and allowance for gluon exchanges
in the effective Lagrangian on the one hand, and by
calculation of the matrix element according to the bag
model with the “bare” quark Lagrangian on the other
hand, is purely fortuitous. It by no means implies
that the calculation of the matrix element according to
the bag model has automatically taken into account the
effects of gluon exchanges at small distances. On the
contrary, the calculation of the matrix element accord-
ing to the bag model is evidently an illegitimate pro-
cedure (see Sec. 5).

Shrock ef al. estimated the matrix element according
to the bag model; they did not take into account ex-
changes of gluons or Higgs particles. For the neglect
of Higgs exchanges to be legitimate, they are obliged
to consider comparatively light # quarks (m,; =15 and
30 GeV). In the analysis of their formulas, Shrock
et al. introduced a factor §=2, by means of which they
attempted to take into account possible corrections to
the theoretical formulas in the following way:

i <R., Ram<E, where Ram= (Am) theor/ (Am) expr R.‘!’el.heor”el"p.

§
As a result, each value of $3 and m; corresponds in
their analysis not to two pairs of values of s, and 5, as
in our case, but to a whole range of values. Our points

TABLE III. Values of sind, and sind for ¢-quark masses 15,
30, and 60 GeV and for 8inf3=0.1 and 0.3.

! my=15 GeV m, =30 GeV m, =60 GeV
sin 85; cos 8§
J sin 6, sin 6 sin 6, ’ sin 6 sin 6, ’ sin 8
0.4; 1 0.28 0.024 0.19 0.017 0.43 0.013
0.4; —1 0.37 0.018 0.29 0.011 0.22 0.007
0.3; 1 0.20 0.010 0.12 0.008 0.07 0.007
03; -1 0.49 0.005 0.42 0.003 0.37 0.001




lie in the middle of the ranges of values of Shrock et al.

The values of the quark mixing angles which we have
found enable us to improve the precision of the results
of Ref. 7 for |¢'/¢| (see the Introduction). The expres-
sion for | 5'/5[ obtained in Ref. 7 contains the product

Sys3sin6. The following bounds on this quantity were
used in Ref. 7:

0.65-10-*<s,s, 5in 6<0.9-10~*, m,=15GeV,

0.13-107°<s,s, sin 6<0.47-10~°, m,=75GeV.
Here we obtain

0.60-10-°<<s,s5 sin §<<0.73-107%, m,=15GeV,

0.11-107°<s,s, sin 6<0.17-10~°, m,=60GeV.

For |¢'/¢| we then obtain

0.92-10-°<|e’/e|<1.1-10~, m,=15GeV,

0.25-10*<|e’/e| <0.40-10~°, m,=60 GeV,
whereas in Ref. 7
1.0-107°<|e’/e|<1.4-107°, m,=15GeV,
0.3-10~°<|e’/e|<1.1-1072, m,=75GeV.

The present experimental bound is |¢'/¢| < 0.017.2°
The ratio |&’/c| was calculated in Ref. 10, where the
value ¢’ =(1/50)¢ was obtained. This value is an over-
estimate, since the calculations of Ref. 10 do not allow
for the importance of small distances in the loops with
heavy quarks (see Ref. 7).

7. CONCLUSIONS

For the Kobayashi—-Maskawa variant of the Weinberg-
Salam model, we have obtained £5.; [Eq. (9)], in the
calculation of which allowance was made for gluon ex-
changes at small distances (numerically, this reduces
to the appearance of a factor ~0.6 in %) and ex-
changes of charged Higgs particles, which are impor-
tant for m, *M,,. The resulting Lagrangian is used to
find expressions for Amys and € in terms of the param-
eters of the six-quark model, and the result of the
vacuum insertion is used in the calculation of the ma-
trix element. Values are found for the quark mixing

Iangles when m, =15, 30, and 60 GeV and s3=0.1 and
0.3; the numerical differences between these results
and those found previously in Ref. 4 were discussed in
Sec. 6.

We have used the values obtained for the mixing angles
to improve the accuracy of the quantity ls’/ ' \, which
had been calculated previously in this model and which
exhibits a discrepancy between the predictions of the
Kobayashi-Maskawa model and the superweak model.
Further information on the quark mixing angles will be
obtained from the study of the weak decays of particles
containing ¢, b, and { quarks.
Recently, the following experimental result was ob-
tained':
I'(D*—nt*n-)
r'(D°*—~K-=*)
In the six-quark model,
[(D°>ntn) a0

- - =35,
T(D°—~K-n*) leicacs—s.s5e | leseacs—s:8se

=(3.3%1.4)%.

Isical? c

B

—id|2 :

Taking the combination of mixing angles with cosd ==1
(Ref. 22) and the maximum value of s;s3 (m, =15 GeV,
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s3=0.3, and s, =0.49), we obtain B=4.5%. The size of
the error in the experimental value of D(D°—1's)/ .
I'(D°—~K"r") and the uncertainty associated with the
violation of SU(3) symmetry almost certainly prevent

us from finally settling on this combination of mixing
angles at the present time, but it is clear that experi-
mental results on the decays of the new particles will
soon make it possible to determine the Kobayashi-
Maskawa matrix which is realized in nature.

I am deeply grateful to L. B. Okun’ for posing the
problem, for stimulating discussions, and for a care-
ful reading of the text, and to A. I. Vainshtein, M. B.
Voloshin, I. Yu. Kobzarev, V. A. Novikov, V. V.
Prokhorov, E. P. Shabalin, M. A. Shifman, and M. G.
Shchepkin for useful discussions. I thank Sandip Pak-
vasa for kindly drawing my attention to Refs. 5 and 22.

Dwe emphasize that the charged Higgs particles are not phys-
ical.

2 The way of looking at the calculation of the matrix element
described here arose as a result of discussions with A. L
Va?nshtefn, M. B. Voloshin, I. Yu. Kobzarev, E. P. Shabalin,
and M. A. Shifman.

3Our treatment of the matrix element (K.£|K" is similar to
that of Ref. 16. A qualitative treatment of this matrix ele-
ment had been given earlier; see Ref. 17.
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