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introduction
A.I.Vainstein (V.M.G. diploma student in early 60’):
“Galitskii was a great expert in Quantum Mechanics”

V.M.Galitskii, B.M. Karnakov, V.I.Kogan, Problems in
Quantum Mechanics, 1992, problem 8.61:
...Ground level of hydrogen atom in strong B...
May be the longest solution (8 pages).

The same problem can be found in L.D.Landau,
E.M.Lifshitz Quantum Mechanics , editions after 1974.
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plan
aB, aH , aH << aB =⇒ B >> e3m2

e

electrons on Landau levels feel weak Coulomb potential
moving along axis z;
Loudon, Elliott 1960, numerical solution of Schrodinger
equation;
LL, GKK: E0 = −(me4/2) × ln2(B/(m2e3)). Ground level
goes to −∞ when B goes to ∞

NO

D = 2 QED - Schwinger model with massive electrons,
radiative “corrections” to Coulomb potential in d = 1;
Πµν , interpolating formula, analytical formula for Φ(z),
g > m - photon “mass” mγ ∼ g, screening at ALL z when
g > m
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D = 4 QED; photon “mass” m2
γ = e3B at superstrong

magnetic fields B >> m2
e/e

3 = 137 × 4.4 × 1013 gauss;
asymptotic behaviour of Φ(z) at z >> 1/me (no
screening) and at z << 1/me (photon “mass” and
screening)

ground state hydrogen atom energy in the superstrong
magnetic field; excited levels

References

Conclusions
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hydrogen atom in strong B

d = 3 : (p2/(2m) − e2/r)χ(r) = Eχ(r)

R(r) = χ(r)/r, r ≥ 0, χ(0) = 0

(χ(0) 6= 0 △1/r = δ(r))

d = 1 : (p2/(2m) − e2/|z|)Ψ(z) = EΨ(z)

−∞ < z < ∞, Ψ(0) 6= 0

variational method for ground state energy:

Ψ(z) ∼ exp(−|z|/b);

< V >∼ ln(1/ǫ)

d = 1 =⇒ d = 3 at z < aH ≡ 1/
√

eB - Landau radius

No2PPT - Prosper – p. 5/25



V (z) = 1/
√

z2 + a2
H

ln(1/ǫ) =⇒ 2 ln(aB/aH) = ln(B/(m2e3))

(aB = 1/(me2) - Bohr radius)

E0 = −2m





aB
∫

aH

U(z)dz





2

(1)

E0 = −(me4/2) × ln2(B/(m2e3))

LL, GKK, BUT: Elliott, Loudon - numerical solution of d=1
Schrodinger equation...
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first excited level: Ψ1(0) = 0, E1 =⇒ −me4/2 (B =⇒ ∞);
degeneracy of odd and even levels; the only nondegenerate
level - E0 =⇒ −∞. One-dimensional Coulomb problem -
Loudon (1959).
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B values
Definitions (for this talk): B > m2

ee
3 = 2.4 ∗ 109Gauss -

strong B, B > m2
e/e

3 = 6 ∗ 1015Gauss - superstrong B.

Bcr = m2
e/e = 4.4 ∗ 1013Gauss - critical B

B in laboratories: 2 ∗ 105Gauss - CMS, Atlas; 106 − 107Gauss
- magnetic cumulation, A.D.Saharov, 1952, H ∗ r2 =const

Pulsars: B ∼ 1013Gauss; Magnetars: B ∼ 1015Gauss

Elliott, Loudon: excitons in semiconductors, m ≪ me
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superstrong B

QED loop corrections to photon propagator drastically
change E0 for B >> m2

e/e
3.

Dirac equation spectrum in a constant homogenious
magnetic field looks like:

ε2
n = m2 + p2

z + (2n + 1)eB + σeB , (2)

where n = 0, 1, 2, ..., σ = ±1 (Rabi, 1928,
2n + 1 + σ =⇒ 2j, j = 0, 1, 2, ...)
εn

>∼ m/e - ultrarelativistic electrons; the only exception is
the lowest Landau level (LLL) which has n = 0, σ = −1.
We will study states on which LLL splits in the field of
nucleus.
Hydrogen atom: electron on LLL moves along axis z; proton
stay at z = 0. What electric potential does electron feel? Let
us look at D = 2, d = D − 1 = 1 QED.
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D = 2 QED: screening of Φ

Φ(k̄) ≡ A0(k̄) =
4πg

k̄2
; Φ ≡ A0 = D00 + D00Π00D00 + ...

...+++

Fig 1. Modification of the Coulomb potential due to the
dressing of the photon propagator.

Summing the series we get:

Φ(k) = − 4πg

k2 + Π(k2)
, Πµν ≡

(

gµν − kµkν

k2

)

Π(k2) (3)
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Π(k2) = 4g2

[

1
√

t(1 + t)
ln(

√
1 + t +

√
t) − 1

]

≡ −4g2P (t) ,

(4)

t ≡ −k2/4m2, [g] =mass. (dim. reg: D = 4 − ǫ, ǫ = 2)
Why in D = 2 Π is finite?
Taking k = (0, k‖), k2 = −k2

‖ for the Coulomb potential in the
coordinate representation we get:

Φ(z) = 4πg

∞
∫

−∞

eik‖zdk‖/2π

k2
‖ + 4g2P (k2

‖/4m
2)

, (5)

and the potential energy for the charges +g and −g is
finally: V (z) = −gΦ(z) .
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Rad. corr. to Coulomb potential
Uehling-Serber correction to Coulomb potential.

Who knows?

QED in D = 4, no magnetic field
Berestetskii, Lifshitz, Pitaevskii, 4 volume of LL Theor.Phys.

e2 correction; exp(−2mr), r >> 1/m - very small correction;

logarithmic enhancement of potential (charge growth) for
r << 1/m (YM - opposite sign, asymptotic freedom)
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Asymptotics of P (t) are:

P (t) =

{

2
3t , t ≪ 1

1 , t ≫ 1 .
(6)

Let us take as an interpolating formula for P (t) the following
expression:

P (t) =
2t

3 + 2t
. (7)

We checked that the accuracy of this approximation is not
worse than 10% for the whole interval of t variation,
0 < t < ∞.
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Φ = 4πg

∞
∫

−∞

eik‖zdk‖/2π

k2
‖ + 4g2(k2

‖/2m
2)/(3 + k2

‖/2m
2)

=

=
4πg

1 + 2g2/3m2

∞
∫

−∞

[

1

k2
‖

+
2g2/3m2

k2
‖ + 6m2 + 4g2

]

eik‖z
dk‖
2π

= (8)

=
4πg

1 + 2g2/3m2

[

−1

2
|z| + g2/3m2

√

6m2 + 4g2
exp(−

√

6m2 + 4g2|z|)
]

.

In the case of heavy fermions (m ≫ g) the potential is given
by the tree level expression; the corrections are suppressed
as g2/m2.

No2PPT - Prosper – p. 14/25



In case of light fermions (m ≪ g):

Φ(z)

∣

∣

∣

∣

∣ m ≪ g
=

{

πe−2g|z| , z ≪ 1
g ln

( g
m

)

−2πg
(

3m2

2g2

)

|z| , z ≫ 1
g ln

( g
m

)

.
(9)

m = 0- Schwinger model; photon get mass. The first gauge
invariant theory with massive vector boson (electroweak
theory: W,Z). Light fermions:
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D = 4 QED
In order to find potential of pointlike charge we need P in
strong B. One starts from electron propagator G in strong
B. Solutions of Dirac equation in homogenious constant in
time B are known, so one can write spectral representation
of electron Green function. Denominators contain
k2 − m2 − 2neB, and for B >> m2/e and k2

‖ << eB in sum

over levels LLL (n = 0) dominates. In coordinate
representation transverse part of LLL wave function is:
Ψ ∼ exp((−x2 − y2)eB) which in momentum representation
gives Ψ ∼ exp((−k2

x − k2
y)/eB).

Substituting electron Green functions into polarization
operator we get:
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Πµν ∼ e2eB

∫

dqxdqy

eB
exp(−

q2
x + q2

y

eB
)∗

∗exp(−
(q + k)2x + (q + k)2y

eB
)dq0dqzγµ

1

q̂0,z − m
γν

1

q̂0,z + k̂0,z − m
=

= e3B ∗ exp(− k2
⊥

2eB
) ∗ Π

(2)
µν (k‖ ≡ kz);

Φ =
4πe

(k2
‖ + k2

⊥)
(

1 − α
3π ln

(

eB
m2

))

+ 2e3B
π exp

(

− k2

⊥

2eB

)

P

(

k2

‖

4m2

) .
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z >> 1/m =⇒ k‖ << m =⇒ P ∼ k2
‖/m

2

Φ(z) ∼

∫

exp(ik‖z)dk‖d
2k⊥

k2
‖(1 + e3B/m2) + k2

⊥
,

first integrate over k‖ with the help of residues, after over
k⊥:

Φ(z)

∣

∣

∣

∣

∣ |z| ≫ 1
m

=
e

|z| , V (z)

∣

∣

∣

∣

∣ z ≫ 1
m

= − e2

|z| (10)
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z << 1/m =⇒ P ∼ 1,Φ ∼ 1/(k2
‖ + k2

⊥ + e3B)

Φ(z)

∣

∣

∣

∣

∣

1
m ≫ z ≫ 1√

eB

= e

∞
∫

0

exp

(

−
√

k2
⊥ + 2e3B

π |z|
)

√

k2
⊥ + 2e3B

π

k⊥dk⊥ =

=
e

|z|exp

(

−
√

2e3B

π
|z|
)

,

V (z) = − e2

|z|exp

(

−
√

2e3B

π
|z|
)

. (11)
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atomic levels
Very Preliminary. Equation which gave ground state energy
with poor accuracy ( but PL, GKK):

E0 = −2m





aB
∫

aH

U(z)dz





2

(12)

(Karnakov, Popov did it much better in 2003 JETP paper).
We split the integral into two parts: from 1/m to aB, where
the screening is absent (large z),

I1 = −
aB
∫

1/m

e2

z
dz = −e2 ln

(

1/e2
)

(13)

and from the Landau radius aH = 1/
√

eB to 1/m, where the
screening occurs (small z): No2PPT - Prosper – p. 22/25



I2 = −
1/m
∫

1/
√

eB

e2

z
exp(−

√
e3Bz)dz = −e2 ln(1/e) . (14)

Finally we get:

E0 = −(me4/2) × ln2(1/e6) = −(me4/2) × 220 (15)

Freezing of ground state energy.
Without screening I = −e2 ln(aB/aH),
E0 = −(me4/2) × ln2(B/m2e3)

Shabad, Usov (2007,2008). Analogous consideration to
what I told for D = 4 + numerical estimates;
220 =⇒ 295; 152 =⇒ 172
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Conclusions
ground state atomic energy at superstrong B - the only
known (for me) case when radiative “correction”
determines the energy of state

analytical expression for charged particle electric
potential in d = 1 is given; for m < g screening take
place at all distances

asymptotics of potential at superstrong B at d = 3 are
found

limit of ground state energy for B >> m2/e3 is
determined analytically: E0 = −(me4/2) × ln2(1/e6)

No2PPT - Prosper – p. 25/25


	introduction
	plan
	hydrogen atom in strong $B$
	B values
	superstrong $B$
	$D=2$ QED: screening of $Phi $
	Rad. corr. to Coulomb potential
	$D=4$ QED
	atomic levels
	References
	Conclusions

