Atomic levels in superstrong $$ **of massive electrons: screening**

M.I.Vysotsky

ITEP, Moscow

Galitskii School of Theoretical Physics

September 20-26, 2010

introduction

A.I.Vainstein (V.M.G. diploma student in early 60'): "Galitskii was ^a great expert in Quantum Mechanics"

V.M.Galitskii, B.M. Karnakov, V.I.Kogan, Problems inQuantum Mechanics, 1992, problem 8.61: ...Ground level of hydrogen atom in strong B... May be the longest solution (8 pages).

The same problem can be found in L.D.Landau, E.M.Lifshitz Quantum Mechanics , editions after 1974.

plan

 $a_B, a_H, \,\, a_H << a_B \Longrightarrow B >> e^3 m_e^2$ electrons on Landau levels feel w electrons on Landau levels feel weak Coulomb potential moving along axis z; Loudon, Elliott 1960, numerical solution of Schrodingerequation;LL, GKK: $E_0 = -(me^4/2) \times \ln^2(B/(m^2e^3))$. Ground level goes to $-\infty$ when B goes to ∞

NO

 $D = 2$ QED - Schwinger model with massive electrons,
redictive "corrections" to Coulemb potential in detail. radiative "corrections" to Coulomb potential in $d=1;$ $\Pi_{\mu\nu}$, interpolating formula, analytical formula for $\Phi(z)$, $g > m$ - photon "mass" $m_\gamma \sim g$, screening at ALL z when
 $g > m$ $q > m$

- $D = 4$ QED; photon "mass" $m_{\gamma}^2 = e^3 B$ at superstrong magnetic fields $B >> m_e^2/e^3 = 137 \times 4.4 \times 10^{13}$ gauss; asymptotic behaviour of $\Phi(z)$ at $z >> 1/m_e$ (no
sereopies) and at $z \leq 1$ (inhaten "respec" a screening) and at $z << 1/m_e$ (photon "mass" and
sereening) screening)
- **•** ground state hydrogen atom energy in the superstrong magnetic field; excited levels
- **References**
- **Conclusions**

\boldsymbol{b} **ydrogen atom in strong** B

$$
d = 3 : (p^{2}/(2m) - e^{2}/r)\chi(r) = E\chi(r)
$$

$$
R(r) = \chi(r)/r, r \ge 0, \chi(0) = 0
$$

$$
(\chi(0) \ne 0 \ \Delta 1/r = \delta(r))
$$

$$
d = 1 : (p2/(2m) - e2/|z|)\Psi(z) = E\Psi(z)
$$

$$
-\infty < z < \infty, \ \Psi(0) \neq 0
$$

variational method for ground state energy:

$$
\Psi(z) \sim exp(-|z|/b);
$$

$$
\langle V \rangle \sim \ln(1/\epsilon)
$$

 $d=1 \Longrightarrow d=3$ at $z < a_D$ $H\equiv 1/\sqrt{eB}$ - Landau radius

$$
V(z) = 1/\sqrt{z^2 + a_H^2}
$$

$$
\ln(1/\epsilon) \Longrightarrow 2\ln(a_B/a_H) = \ln(B/(m^2e^3))
$$

$$
(a_B = 1/(me^2) - \text{Bohr radius})
$$

$$
E_0 = -2m \left(\int_{a_H}^{a_B} U(z) dz \right)^2 \tag{1}
$$

$$
E_0 = -(me^4/2) \times \ln^2(B/(m^2e^3))
$$

LL, GKK, BUT: Elliott, Loudon - numerical solution of d=1Schrodinger equation...

first excited level: $\Psi_1(0)=0, E_1 \Longrightarrow -me^4/2 \,\,(B \Longrightarrow \infty);$ degeneracy of add and avon loveler the aphymendegen degeneracy of odd and even levels; the only nondegeneratelevel - $E_0 \Longrightarrow -\infty$. One-dimensional Coulomb problem -
Leuden (1050) Loudon (1959).

B values

Definitions (for this talk): $B > m_e^2 e^3 = 2.4 * 10^9 \textsf{Gauss}$ strong $B, \, B > m_e^2/e^3 = 6 * 10^{15}$ Gauss - superstrong B.

 $B_{cr} = m_e^2/e = 4.4 * 10^{13}$ Gauss - critical B

B in laboratories: $2 * 10^5$ Gauss - CMS, Atlas; $10^6 - 10^7$ Gauss magnetic cumulation, A.D.Saharov, 1952, $H * r^2$ = const

Pulsars: $B \sim 10^{13}$ Gauss; Magnetars: $B \sim 10^{15}$ Gauss

Elliott, Loudon: excitons in semiconductors, $m \ll m_e$

superstrong ^B

QED loop corrections to photon propagator drasticallychange E_0 for $B >> m_e^2/e^3.$ Dirac equation spectrum in ^a constant homogeniousmagnetic field looks like:

$$
\varepsilon_n^2 = m^2 + p_z^2 + (2n+1)eB + \sigma eB \quad , \tag{2}
$$

where $n = 0, 1, 2, ..., \sigma = \pm 1$ (Rabi, 1928, $2n+1+\sigma \Longrightarrow 2j,\,\, j=0,1,2,...)$ c $\qquad \geq m\,\,$ le - Ultrarelativistic elect

 $\varepsilon_n \gtrsim m/e$ - ultrarelativistic electrons; the only exception is
the lowest Landau level (LLL) which has $n=0$, $\sigma=-1$ the lowest Landau level (LLL) which has $n=0,\,\sigma=-1.$ We will study states on which LLL splits in the field of nucleus.

Hydrogen atom: electron on LLL moves along axis z ; proton stay at $z=0.$ What electric potential does electron feel? Let us look at $D = 2, d = D - 1 = 1$ QED.

$D = 2$ QED: screening of Φ

$$
\Phi(\bar{k}) \equiv A_0(\bar{k}) = \frac{4\pi g}{\bar{k}^2} \; ; \; \; \mathbf{\Phi} \equiv \mathbf{A}_0 = D_{00} + D_{00} \Pi_{00} D_{00} + \dots
$$

$$
mv + \rho_0 w + \rho_1 w_2 w_3 + \dots
$$

Fig 1. Modification of the Coulomb potential due to thedressing of the photon propagator.

Summing the series we get:

$$
\Phi(k) = -\frac{4\pi g}{k^2 + \Pi(k^2)}, \quad \Pi_{\mu\nu} \equiv \left(g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right)\Pi(k^2)
$$
 (3)

$$
\Pi(k^2) = 4g^2 \left[\frac{1}{\sqrt{t(1+t)}} \ln(\sqrt{1+t} + \sqrt{t}) - 1 \right] \equiv -4g^2 P(t) ,
$$
\n
$$
t \equiv -k^2 / 4m^2, \quad [g] = \text{mass. (dim. reg: } D = 4 - \epsilon, \epsilon = 2)
$$
\nWhy in $D = 2$ Π is finite?

\nTaking $k = (0, k_{\parallel}), k^2 = -k_{\parallel}^2$ for the Coulomb potential in the coordinate representation we get:

$$
\Phi(z) = 4\pi g \int_{-\infty}^{\infty} \frac{e^{ik_{\parallel}z} dk_{\parallel}/2\pi}{k_{\parallel}^2 + 4g^2 P(k_{\parallel}^2 / 4m^2)},
$$
\n(5)

and the potential energy for the charges $+g$ and $-g$ is finally: $V(z) = -g\Phi(z)$.

Rad. corr. to Coulomb potential

Uehling-Serber correction to Coulomb potential.

Who knows?

 QED in $D=4$, no magnetic field
Perestatekij Lifebitz, Piteovskij Berestetskii, Lifshitz, Pitaevskii, ⁴ volume of LL Theor.Phys.

 $\,e\,$ 2 correction; $exp(\phi)$ $-2mr), r >>1/m$ - very small correction;

logarithmic enhancement of potential (charge growth) for $r << 1/m$ (YM - opposite sign, asymptotic freedom)

Asymptotics of $P(t)$ are:

$$
P(t) = \begin{cases} \frac{2}{3}t, & t \ll 1 \\ 1, & t \gg 1 \end{cases} \tag{6}
$$

Let us take as an interpolating formula for $P(t)$ the following expression:

$$
\overline{P}(t) = \frac{2t}{3+2t} \quad . \tag{7}
$$

We checked that the accuracy of this approximation is not worse than 10% for the whole interval of t variation, $0 < t < \infty$.

$$
\Phi = 4\pi g \int_{-\infty}^{\infty} \frac{e^{ik_{\parallel}z} dk_{\parallel}/2\pi}{k_{\parallel}^2 + 4g^2(k_{\parallel}^2/2m^2)/(3 + k_{\parallel}^2/2m^2)} =
$$
\n
$$
= \frac{4\pi g}{1 + 2g^2/3m^2} \int_{-\infty}^{\infty} \left[\frac{1}{k_{\parallel}^2} + \frac{2g^2/3m^2}{k_{\parallel}^2 + 6m^2 + 4g^2} \right] e^{ik_{\parallel}z} \frac{dk_{\parallel}}{2\pi} =
$$
\n
$$
= \frac{4\pi g}{1 + 2g^2/3m^2} \left[-\frac{1}{2}|z| + \frac{g^2/3m^2}{\sqrt{6m^2 + 4g^2}} \exp(-\sqrt{6m^2 + 4g^2}|z|) \right]
$$

In the case of heavy fermions $(m\gg g)$ the potential is given — І. by the tree level expression; the corrections are suppressedas g^2/m^2 .

In case of light fermions $(m\ll g)$:

$$
\Phi(z) \bigg| m \ll g \quad = \begin{cases} \pi e^{-2g|z|} & , \quad z \ll \frac{1}{g} \ln\left(\frac{g}{m}\right) \\ -2\pi g\left(\frac{3m^2}{2g^2}\right)|z| & , \quad z \gg \frac{1}{g} \ln\left(\frac{g}{m}\right) \end{cases} \tag{9}
$$

 $m = 0$ - Schwinger model; photon get mass. The first gauge
inverient theory with massive vector beson (electroweak invariant theory with massive vector boson (electroweaktheory: $W_\cdot\,Z$). Light fermions:

D ⁼ ⁴ **QED**

In order to find potential of pointlike charge we need P in strong B . One starts from electron propagator G in strong
 B . Selutions of Dires equation in bemessarieus constant in B. Solutions of Dirac equation in homogenious constant in time *B* are known, so one can write spectral representation
of electron Creap function. Denominators contain of electron Green function. Denominators contain k^2-m^2-2neB , and for $B>>m^2/e$ and $k_{\shortparallel}^2<< e$ $m^2 - 2neB$, and for $B >> m^2/e$ and $k_{\parallel}^2 << eB$ in sum over levels LLL $(n=0)$ dominates. In coordinate representation transverse part of LLL wave function is: $\Psi \sim exp((-x^2-y^2)eB)$ which in momentum representation gives $\Psi \sim exp((-k_x^2-k_y^2)/eB).$ Substituting electron Green functions into polarizationoperator we get:

$$
\Pi_{\mu\nu} \sim e^2 e B \int \frac{dq_x dq_y}{e B} exp(-\frac{q_x^2 + q_y^2}{e B}) *
$$

\n
$$
*exp(-\frac{(q+k)_x^2 + (q+k)_y^2}{e B}) dq_0 dq_z \gamma_\mu \frac{1}{\hat{q}_{0,z} - m} \gamma_\nu \frac{1}{\hat{q}_{0,z} + \hat{k}_{0,z} - m} =
$$

\n
$$
= e^3 B * exp(-\frac{k_\perp^2}{2e B}) * \Pi_{\mu\nu}^{(2)}(k_\parallel \equiv k_z);
$$

\n
$$
\Phi = \frac{4\pi e}{(k_\parallel^2 + k_\perp^2) \left(1 - \frac{\alpha}{3\pi} \ln\left(\frac{e B}{m^2}\right)\right) + \frac{2e^3 B}{\pi} exp\left(-\frac{k_\perp^2}{2e B}\right) P\left(\frac{k_\parallel^2}{4m^2}\right)}.
$$

$$
z \gg 1/m \Longrightarrow k_{\parallel} \ll m \Longrightarrow P \sim k_{\parallel}^2/m^2
$$

$$
\Phi(z) \sim \int \frac{\exp(ik_{\parallel}z)dk_{\parallel}d^2k_{\perp}}{k_{\parallel}^2(1+e^3B/m^2)+k_{\perp}^2} ,
$$

first integrate over k_\parallel with the help of residues, after over k_{\perp} :

$$
\Phi(z) \bigg| |z| \gg \frac{1}{m} = \frac{e}{|z|}, \quad V(z) \bigg| |z| \gg \frac{1}{m} = -\frac{e^2}{|z|}
$$
 (10)

$$
z \ll 1/m \Longrightarrow P \sim 1, \Phi \sim 1/(k_{\parallel}^2 + k_{\perp}^2 + e^3 B)
$$

$$
\Phi(z) \bigg|_{\frac{1}{m}} \gg z \gg \frac{1}{\sqrt{eB}} = e \int_{0}^{\infty} \frac{\exp\left(-\sqrt{k_{\perp}^{2} + \frac{2e^{3}B}{\pi}}|z|\right)}{\sqrt{k_{\perp}^{2} + \frac{2e^{3}B}{\pi}}} k_{\perp} dk_{\perp} = \frac{e}{|z|} \exp\left(-\sqrt{\frac{2e^{3}B}{\pi}}|z|\right) ,
$$

$$
V(z) = -\frac{e^{2}}{|z|} \exp\left(-\sqrt{\frac{2e^{3}B}{\pi}}|z|\right) .
$$
(11)

atomic levels

Very Preliminary. Equation which gave ground state energywith poor accuracy (but PL, GKK):

$$
E_0 = -2m \left(\int_{a_H}^{a_B} U(z) dz \right)^2 \tag{12}
$$

(Karnakov, Popov did it much better in 2003 JETP paper). We split the integral into two parts: from $1/m$ to a_B , where
the sereoping is absent (large s) the screening is absent (large z),

$$
I_1 = -\int_{1/m}^{a_B} \frac{e^2}{z} dz = -e^2 \ln(1/e^2)
$$
 (13)

and from the Landau radius $a_H = 1/\sqrt{eB}$ to $1/m$, where the
esteeping escure (emell a): screening occurs (small z): No2PPT - Prosper– p. 22/25

$$
I_2 = -\int_{1/\sqrt{eB}}^{1/m} \frac{e^2}{z} \exp(-\sqrt{e^3 B} z) dz = -e^2 \ln(1/e) . \tag{14}
$$

Finally we get:

$$
E_0 = -(me^4/2) \times \ln^2(1/e^6) = -(me^4/2) \times 220 \tag{15}
$$

Freezing of ground state energy. Without screening $I = -e^2 \ln(a_B/a_H)$, $E_0 = -(me^4/2) \times \ln^2(B/m^2e^3)$

Shabad, Usov (2007,2008). Analogous consideration towhat I told for $D=4$ + numerical estimates;
220 \times 205, 152 \times 172 $220 \Longrightarrow 295; 15^2 \Longrightarrow 17^2$

References

Shabad, Usov (2007,2008): $D = 4$ screening of Coulomb
patential, freezing of the epergy of ground atota for potential, freezing of the energy of ground state for $B >> m^2/e^3$: Skobelev(1975), Loskutov, Skobelev(1976): linear in B termand $D=4 \Longrightarrow D=2$ correspondence in photon polarization
onerator for $B\searrow m^2/e$ operator for $B > m^2/e;$ Loskutov, Skobelev(1983); Kuznetsov, Mikheev, Osipov(2002): in $B >> m^2/e^3$ photon "mass" emerge; Loudon(1959), Elliott, Loudon(1960) - atomic energies instrong $B > m^2 e^3$ - numerical calculations; Karnakov, Popov(2003) - analytical formulas for atomicenergies in strong $B > m^2 e^3$;

Vysotsky(2010) - analytical formula for ground statehydrogen energy for $B >> m^2/e^3.$

Conclusions

- ground state atomic energy at superstrong B the only
known (for me) cose when redictive "correction" known (for me) case when radiative "correction"determines the energy of state
- analytical expression for charged particle electricpotential in $d = 1$ is given; for $m < g$ screening take place at all distances
- asymptotics of potential at superstrong B at $d=3$ are found
- limit of ground state energy for $B >> m^2/e^3$ is determined analytically: $E_0=-(me^4/2)\times\ln^2$ $(m e^4$ $^{4}/2) \times \ln^{2}(1/e^{6})$ $\left(0\right)$