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Recently solved QM + QED (almost) textbook problem.

A.E.Shabad, V.V.Usov (2007,2008) - numerically;
M.I.Vysotsky, JETP Lett. 92 (2010)15; B.Machet,
M.I.Vysotsky, PR D 83 (2011)025022 - analytically;

For this talk:

strong magnetic field: B > m2
ee

3

(Gauss units; e2 = α = 1/137)

superstrong magnetic field: B > m2
e/e

3

aH = 1/
√
eB
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Landau radius aH versus B
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plan
aB, aH , aH << aB =⇒ B >> e3m2

e

electrons on Landau levels feel weak Coulomb potential
moving along axis z;
Loudon, Elliott 1960, numerical solution of Schrodinger
equation; (Wang, Hsue 1995)
LL QM (after 1974), GKK(1992):
E0 = −(me4/2)× ln2(B/(m2e3)). Ground level goes to
−∞ when B goes to ∞

NO

D = 2 QED - Schwinger model with massive electrons,
radiative “corrections” to Coulomb potential in d = 1;
Πµν , interpolating formula, analytical formula for Φ(z),
g > m - photon “mass” mγ ∼ g, screening at ALL z when
g > m
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D = 4 QED; photon “mass” m2
γ = e3B at superstrong

magnetic fields B > m2
e/e

3 = 137× 4.4× 1013 gauss;
analytical formula for Φ(z)

Electron in magnetic field - general consideration;
LLL - nonrelativistic at all B

The shallow-well approximation

The Karnakov-Popov equation for atomic energies

Equation for the energies of even states with account of
screening

Magnetic fields in laboratory and in stars; excitons

References

Conclusions
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hydrogen atom in strong B

d = 3 : (p2/(2m)− e2/r)χ(r) = Eχ(r)

R(r) = χ(r)/r, r ≥ 0, χ(0) = 0

(χ(0) 6= 0 △1/r = δ(r))

d = 1 : (p2/(2m)− e2/|z|)Ψ(z) = EΨ(z)

−∞ < z <∞, Ψ(0) 6= 0

variational method for ground state energy:

Ψ(z) ∼ exp(−|z|/b);

< V >∼ ln(1/ǫ)

d = 1 =⇒ d = 3 at z < aH ≡ 1/
√
eB - Landau radius
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V (z) = −e2/
√

z2 + a2H

ln(1/ǫ) =⇒ 2 ln(aB/aH) = ln(B/(m2e3))

(aB = 1/(me2) - Bohr radius)

E0 = −2m





aB
∫

aH

U(z)dz





2

E0 = −(me4/2)× ln2(B/(m2e3))

LL, GKK, BUT: Elliott, Loudon - numerical solution of d=1
Schrodinger equation - very bad accuracy of ln2 formula.
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First excited level: Ψ1(0) = 0, E1 =⇒ −me4/2 (B =⇒ ∞);
degeneracy of odd and even levels; the only nondegenerate
level - E0 =⇒ −∞. One-dimensional Coulomb problem -
Loudon (1959).
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D = 2 QED: screening of Φ

Φ(k̄) ≡ A0(k̄) =
4πg

k̄2
; Φ ≡ A0 = D00 +D00Π00D00 + ...

...+++

Fig 1. Modification of the Coulomb potential due to the
dressing of the photon propagator.

Summing the series we get:

Φ(k) = − 4πg

k2 +Π(k2)
, Πµν ≡

(

gµν −
kµkν
k2

)

Π(k2)
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Π(k2) = 4g2

[

1
√

t(1 + t)
ln(

√
1 + t+

√
t)− 1

]

≡ −4g2P (t) ,

t ≡ −k2/4m2, [g] =mass. (dim. reg: D = 4− ǫ, ǫ = 2)
Why in D = 2 Π is finite?
Taking k = (0, k‖), k2 = −k2‖ for the Coulomb potential in the
coordinate representation we get:

Φ(z) = 4πg

∞
∫

−∞

eik‖zdk‖/2π

k2‖ + 4g2P (k2‖/4m
2)

,

and the potential energy for the charges +g and −g is
finally: V (z) = −gΦ(z) .

No2PPT - Prosper – p. 10



Rad. corr. to Coulomb potential
Uehling-Serber correction to Coulomb potential.

Who knows?

QED in D = 4, no magnetic field
Berestetskii, Lifshitz, Pitaevskii, 4 volume of LL Theor.Phys.

e2 correction; exp(−2mr), r >> 1/m - very small correction;

logarithmic enhancement of potential (charge growth) for
r << 1/m (YM - opposite sign, asymptotic freedom)
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Asymptotics of P (t) are:

P (t) =

{

2
3t , t≪ 1

1 , t≫ 1 .

Let us take as an interpolating formula for P (t) the following
expression:

P (t) =
2t

3 + 2t
.

The accuracy of this approximation is not worse than 10%
for the whole interval of t variation, 0 < t <∞.
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Φ = 4πg

∞
∫

−∞

eik‖zdk‖/2π

k2‖ + 4g2(k2‖/2m
2)/(3 + k2‖/2m

2)
=

=
4πg

1 + 2g2/3m2

∞
∫

−∞

[

1

k2‖
+

2g2/3m2

k2‖ + 6m2 + 4g2

]

eik‖z
dk‖
2π

= (1)

=
4πg

1 + 2g2/3m2

[

−1

2
|z|+ g2/3m2

√

6m2 + 4g2
exp(−

√

6m2 + 4g2|z|)
]

.

In the case of heavy fermions (m≫ g) the potential is given
by the tree level expression; the corrections are suppressed
as g2/m2.
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In case of light fermions (m≪ g):

Φ(z)

∣

∣

∣

∣

∣ m≪ g
=

{

πe−2g|z| , z ≪ 1
g ln

( g
m

)

−2πg
(

3m2

2g2

)

|z| , z ≫ 1
g ln

( g
m

)

.

m = 0- Schwinger model; photon get mass. The first gauge
invariant theory with massive vector boson (electroweak
theory: W,Z).

Light fermions - continuous transition from m > g to m = 0.

Next two figures correspond to g = 0.5, m = 0.1:
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D = 4 QED
In order to find potential of pointlike charge we need P in
strong B. One starts from electron propagator G in strong
B. Solutions of Dirac equation in homogenious constant in
time B are known, so one can write spectral representation
of electron Green function. Denominators contain
k2 −m2 − 2neB, and for B >> m2/e and k2‖ << eB in sum

over levels LLL (n = 0) dominates. In coordinate
representation transverse part of LLL wave function is:
Ψ ∼ exp((−x2 − y2)eB) which in momentum representation
gives Ψ ∼ exp((−k2x − k2y)/eB).
Substituting electron Green functions into polarization
operator we get:
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Πµν ∼ e2eB

∫

dqxdqy
eB

exp(−
q2x + q2y
eB

)∗

∗exp(−
(q + k)2x + (q + k)2y

eB
)dq0dqzγµ

1

q̂0,z −m
γν

1

q̂0,z + k̂0,z −m
=

= e3B ∗ exp(− k2⊥
2eB

) ∗ Π(2)
µν (k‖ ≡ kz);

Φ =
4πe

(k2‖ + k2⊥)
(

1− α
3π ln

(

eB
m2

))

+ 2e3B
π exp

(

− k2

⊥

2eB

)

P
(

k2

‖

4m2

) .
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Φ(z) =

= 4πe

∫

eik‖zdk‖d
2k⊥/(2π)3

k2‖ + k2⊥ + 2e3B
π exp(−k2⊥/(2eB))(k2‖/2m

2
e)/(3 + k2‖/2m

2
e)

,

Φ(z) =
e

|z|
[

1− e−
√
6m2

e|z| + e−
√

(2/π)e3B+6m2
e|z|

]

.

For magnetic fields B ≪ 3πm2/e3 the potential is Coulomb
up to small power suppressed terms:

Φ(z)

∣

∣

∣

∣

∣ e3B ≪ m2
e

=
e

|z|

[

1 +O

(

e3B

m2
e

)]

in full accordance with the D = 2 case, where g2 plays the
role of e3B.
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In the opposite case of superstrong magnetic fields
B ≫ 3πm2

e/e
3 we get:

Φ(z) =



















e
|z|e

(−
√

(2/π)e3B|z|), 1√
(2/π)e3B

ln
(√

e3B
3πm2

e

)

> |z| > 1√
eB

e
|z|(1− e(−

√
6m2

e|z|)), 1
m > |z| > 1√

(2/π)e3B
ln
(√

e3B
3πm2

e

)

e
|z| , |z| > 1

m

,

V (z) = −eΦ(z)
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Modified Coulomb potential at B = 1017G (blue) and its long
distance (green) and short distance (red) asympotics.
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Relative accuracy of analytical formula for modified
Coulomb potential at B = 1017G.
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electron in magnetic field
spectrum of Dirac eq:

ε2n = m2
e + p2z + (2n+ 1 + σz)eB ,

n = 0, 1, 2, 3, ...; σz = ±1
for B > Bcr = m2

e/e the electrons are relativistic
with only one exception: electrons from lowest Landau level
(LLL, n = 0, σz = −1) can be nonrelativistic.

In what follows we will study the spectrum of electrons from
LLL in the Coulomb field of the proton modified by the
superstrong B.

spectrum of Schrödinger eq. in cylindrical coordinates (ρ̄, z)

in the gauge, where Ā = 1
2 [B̄r̄]:
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LL QM

Epznρmσz
=

(

nρ +
|m|+m+ 1 + σz

2

)

eB

me
+

p2z
2me

,

LLL: nρ = 0, σz = −1,m = 0,−1,−2, ...

R0m(ρ̄) =
[

π(2a2H)1+|m|(|m|!)
]−1/2

ρ|m|e(imϕ−ρ2/(4a2

H)) ,

Now we should take into account electric potential of atomic
nuclei situated at ρ̄ = z = 0. For aH ≪ aB adiabatic
approximation is applicable and the wave function in the
following form should be looked for:

Ψn0m−1 = R0m(ρ̄)χn(z) ,

where χn(z) is the solution of the Schrödinger equation
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for electron motion along a magnetic field:
[

− 1

2m

d2

dz2
+ Ueff (z)

]

χn(z) = Enχn(z) .

Without screening the effective potential is given by the
following formula:

Ueff (z) = −e2
∫ |R0m(ρ)|2

√

ρ2 + z2
d2ρ ,

For |z| ≫ aH the effective potential equals Coulomb:

Ueff (z)

∣

∣

∣

∣

∣ z ≫ aH
= − e2

|z|
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and is regular at z = 0:

Ueff (0) ∼ − e2

|aH | .

Since Ueff (z) = Ueff (−z), the wave functions are odd or
even under reflection z → −z; the ground states (for
m = 0,−1,−2, ...) are described by even wave functions.
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The shallow-well approximation

Esw = −2me





aB
∫

aH

U(z)dz





2

= −(mee
4/2)ln2(B/(m2

ee
3))

Used to calculate the ground state energy of hydrogen in
strong B in LL QM (after 1974 editions); GKK; Shabad,
Usov.
Analogous formula for m 6= 0 published in 1971 by Barbieri.

− 1

2µ

d2

dz2
χ(z) + U(z)χ(z) = E0χ(z)

Neglecting E0 in comparison with U and integrating we get:
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χ′(a) = 2µ

a
∫

0

U(x)χ(x)dx ,

where we assume U(x) = U(−x), that is why χ is even.
The next assumptions are: 1. the finite range of the
potential energy: U(x) 6= 0 for a > x > −a; 2. χ undergoes
very small variations inside the well. Since outside the well

χ(x) ∼ e−
√

2µ|E0| x, we readily obtain:

|E0| = 2µ





a
∫

0

U(x)dx





2

.
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For
µ|U |a2 ≪ 1

(condition for the potential to form a shallow well) we get
that, indeed, |E0| ≪ |U | and that the variation of χ inside the
well is small, ∆χ/χ ∼ µ|U |a2 ≪ 1.
Concerning the one-dimensional Coulomb potential, it
satisfies this condition only for a≪ 1/(mee

2) ≡ aB.
(Very counterintuitive)
This explains why the accuracy of log2 formula is very poor.
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Karnakov - Popov equation
It provides a several percent accuracy for the energies of
even states for H > 103 (H ≡ B/(m2

ee
3).

Main idea: to integrate Sh eq with effective potential from
x = 0 till x = z, where aH << z << aB and to equate
obtained expression for χ′(z) to the logarithmic derivative of
Whittaker function - the solution of Sh eq with Coulomb
potential, which exponentially decreases at z >> aB:

2 ln

(

z

aH

)

+ ln 2− ψ(1 + |m|) +O(aH/z) =

2 ln

(

z

aB

)

+ λ+ 2 ln λ+ 2ψ

(

1− 1

λ

)

+ 4γ + 2 ln 2 + O(z/aB) ,

E = −(mee
4/2)λ2
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The energies of the odd states are:

Eodd = −mee
4

2n2
+O

(

m2
ee

3

B

)

, n = 1, 2, ... .

So, for superstrong magnetic fields B ∼ m2
e/e

3 the
deviations of odd states from the Balmer series are
negligible.
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Energies of even states; screening
When screening is taken into account an expression for
effective potential transforms into

Ũeff (z) = −e2
∫ |R0m(~ρ)|2

√

ρ2 + z2
d2ρ

[

1− e−
√
6m2

e z + e−
√

(2/π)e3B+6m2
e z
]

Usimpl(z) = −e2 1
√

a2H + z2

[

1− e−
√
6m2

e z + e−
√

(2/π)e3B+6m2
e z
]
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Eff potential - figures
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Effective potentials at B = 1017G
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Modified KP equation
The original KP equation for LLL splitting by Coulomb
potential:

ln(H) = λ+ 2 ln λ+ 2ψ

(

1− 1

λ

)

+ ln 2 + 4γ + ψ(1 + |m|) .

The modified KP equation, which takes screening into
account:

ln







H

1 +
e6

3π
H






= λ+2 ln λ+2ψ

(

1− 1

λ

)

+ln 2+4γ+ψ(1+|m|) .

E = −(mee
4/2)λ2
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spectrum

n=1

n=2

n=3
n=4
n=5

odd
(Balmer)

m=−5m=−1

B −> infinity

−1

−.5

−.9

−.4

−.3

−.1

Ry

−108

even

m=0 ......

−.7

−.8

−.6

−.2

−88

−126
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B values
B > m2

ee
3 = 2.4 ∗ 109Gauss - strong B,

B > m2
e/e

3 = 6 ∗ 1015Gauss - superstrong B.

Bcr = m2
e/e = 4.4 ∗ 1013Gauss - critical B

B in laboratories:
106 − 107Gauss - magnetic cumulation, A.D.Saharov, 1952,
H ∗ r2 =const

Pulsars: B ∼ 1013Gauss; Magnetars: B ∼ 1015Gauss

Elliott, Loudon: excitons in semiconductors,
m∗ ≪ me, e∗ << e B > 2000 Gauss - strong B

superstrong B - graphene: m << me, α ∼ 1 ???
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Conclusions
ground state atomic energy at superstrong B - the only
known (for me) case when radiative “correction”
determines the energy of state

analytical expression for charged particle electric
potential in d = 1 is given; for m < g screening take
place at all distances

analytical expression for charged particle electric
potential at superstrong B at d = 3 is found; screening
take place at distances |z| < 1/me

an algebraic formula for the energy levels of a hydrogen
atom originating from the lowest Landau level in
superstrong B has been obtained
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